错位相减法万能公式是什么?
错位相减法万能公式:bn=b1+(n-1)×d。如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:
(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式。
(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法。
解题方法:
在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):
S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)。
在(1)的左右两边同时乘上a。得到等式(2)如下:
aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)。
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)。
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。
S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)。
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
错位相减法怎么减
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 目录 简介 举例 错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列。 编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0) 当x=1时,Sn=1+3+5+…+(2n-1
错位相减法详解?
错位相减法:若An为等差数列,Bn为等比数列,求A1B1+A2B2+.+AnBn的和.即就是当求一个数列的前n项和.其中每一项都可以拆成一个等差数列与一个等比数列相乘.这时就可以用错位相减法.若求数列前n项和为Sn.我们应先构造一个可以与其错位相减的新式.其一般方法是乘以原数列的公比,如数列中公比为2,则我们构成的新式为2Sn,数列中公比为1/2,则我们构成的新式为1/2Sn.先由原式观察出公比后再写出新式.书写是为了避免出错,我们写新式可以空着第一项不写,新式的首项对应在原式的第2项下面,新式第2项对应在原式第3项下面,以此类推.注意由于错位,新式倒数第2项对应原式末项.新式末项空出,即无原
数学错位相减法?
An=(n+1)×2∧n Sn=2×2∧1+3×2∧2+4×2∧3+……+(n+1)×2∧n ① 2Sn=2×2∧2+3×2∧3+4×2∧4+……+(n+1)×2∧(n+1) ② ①-②,得-Sn=2×2∧1+2∧2+2∧3+……+2∧(n+1) 遇到等差数列乘等比数列这种形式的通项公式,采用错位相减法。先写出前n项和,然后写出公比与前n项和的乘积,两者相减,最终求得Sn.
各位英雄好汉 错位相减法是什么东西? 怎么使用!小学生,例子简单一些!就算我跪下来求大家了。
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。错位相减较常用在差比数列(通项表现为一个等差数列与一个等比数列的乘积),如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列。